Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Biosens Bioelectron ; 226: 115104, 2023 Apr 15.
Article in English | MEDLINE | ID: covidwho-2307021

ABSTRACT

The separation of the superimposed electrochemical signals of intracellular guanine (G) and xanthine (X) is difficult, which is great obstacle to the application of cell electrochemistry. In this paper, independent functional modules, G-functional module (G-FM) and X-functional module (X-FM), were constructed by molecular imprinting technology for sensitive detection of G and X without mutual interference, then integrated in dual-functional module cellular electrochemical sensing platform (DMCEP) as signal sensing units. DMCEP transmitted signals of G and X in cells synchronously to two windows by two signal sensing channels, and achieved the separation of superimposed signals of G and X in cells. DMCEP exhibited satisfactory reproducibility with relative standard deviation (RSD) of 3.10 and 2.22 %, repeatability with RSD of 3.72 and 3.05 % for G and X detection, and detection limit 0.05 µΜ for G and 0.06 µΜ for X. Good linear relationships between cell concentrations and the signals of G and X on DMCEP were shown in range of 0.75-85 × 106 and 3-85 × 106 cells/mL, respectively. The growth of MCF-7 cells was tracked by DMCEP, and showed consistent trend with the cell counting method, while the change of cell viability from lag to logarithmic phase captured by DMCEP was earlier than that of cell counting method. This strategy provided the foundation for the establishment of the cell viability electrochemical detection method, and new insights into the simultaneous recording of other analyses with superimposed peak positions and the simultaneous tracking of multiple biomarkers.


Subject(s)
Biosensing Techniques , Guanine , Humans , Xanthine , Guanine/analysis , Reproducibility of Results , MCF-7 Cells , Electrochemical Techniques , Limit of Detection , Electrodes
2.
J Environ Manage ; 317: 115460, 2022 Sep 01.
Article in English | MEDLINE | ID: covidwho-1867356

ABSTRACT

This work presents the temporal and spatial characteristics of the major air pollutants and their associated health risks in China from 2019 to 2020, by using the monitoring data from 367 cities. The annual average PM2.5, PM10, NO2, SO2, CO, and O3 concentrations decreased by 10.9%, 13.2%, 9.3%, 10.1%, 9.4%, and 5.5% from 2019 to 2020. National average PM2.5 concentration in 2020 met the standard of 35 µg/m3, and that of O3 decreased from 2019. COVID-19 lockdown affected NO2 level dramatically, yet influences on PM2.5 and O3 were less clear-cut. Positive correlations between PM2.5 and O3 were found, even in winter in all five key regions, e.g., Jing-Jin-Ji (JJJ), FenWei Plain (FWP), Yangtze River Delta (YRD), Pearl River Delta (PRD) and Chengdu-Chongqing Region (CCR), indicating importance of secondary production for both PM2.5 and O3. Large seasonal variability of PM2.5-SO2 correlation indicates a varying role of SO2 to PM2.5 pollution in different seasons; and generally weak correlations in winter between PM2.5 and NO2 or SO2 reveal the complexity of secondary formation processes to PM2.5 pollution in winter. Multilinear regression analysis between PM2.5 and SO2, NO2 and CO demonstrates that PM2.5 is more sensitive to the change of NO2 than SO2 in JJJ, FWP, PRD and CCR, suggesting a priority of NOx emission control for future PM2.5 reduction. Furthermore, the new World Health Organization Air Quality Guidelines (WHO AQG2021) were adopted to calculate the excess health risks (ER) as well as the health-risk based air quality index (HAQIWHO) of the pollutants. Such assessment points out the severity of air pollution associated health risks under strict standards: 40.0% of days had HAQIWHO>100, while only 14.4% days had AQI>100. PM2.5 ER was generally larger than O3 ER, but O3 ER in low PM2.5 region (PRD) and during summer became more serious. Notably, NO2 ER became even more important than PM2.5 due to its strict limit of WHO AQG2021. Overall, our results highlight the increasing importance of O3 in both air quality evaluation and health risk assessment, and the importance of coordinated mitigation of multiple pollutants (mainly PM2.5, O3 and NO2) in protecting the public health.


Subject(s)
Air Pollutants , Air Pollution , COVID-19 , Air Pollutants/analysis , Air Pollution/analysis , China , Cities , Communicable Disease Control , Environmental Monitoring , Humans , Nitrogen Dioxide/analysis , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL